Buy This Book |
The subject of this book is a hot topic with currently no monographic support. It is more advanced, specialized and mathematical than its competitors, and a comprehensive book on regularization techniques for atmospheric science is much needed for further development in this field. Written by brilliant mathematicians, this research monograph presents and analyzes numerical algorithms for atmospheric retrieval, pulling together all the relevant material in a consistent, very powerful manner.
The first chapter presents the typical retrieval problems encountered in atmospheric remote sensing. Chapter 2 introduces the concept of ill-posedness for linear discrete equations, illustrating the difficulties associated with the solution of the problems by considering a temperature retrieval test problem and analyzing the solvability of the discrete equation by using the singular value decomposition of the corresponding matrix. A detailed description of the Tikhonov regularization for linear problems is the subject of Chapter 3, in which the authors introduce a set of mathematical and graphical tools to characterize the regularized solution. The goal of Chapter 4 is to reveal the similitude between Tikhonov regularization and statistical inversion regarding the regularized solution representation, the error analysis, and the design of parameter choice methods. The following chapter briefly surveys some classical iterative regularization methods such as the Landweber iteration and semi-iterative methods, and then treats the regularization effect of the conjugate gradient method applied to the normal equations.